

Asterisk & LRKProxy

Mojtaba Esfandiari.S

dept. of R&D member of NasimTelecom Tehran, Iran

Who am I...

. phd student in Azad university of Mashhad

. VoIP consultant and software engineer

. 15 years experience in developing voice over ip projects

. Wrote a book about Asterisk in Persian language.

. dCAP No. 2265 April 2014

. Member of Kamailio developer (lrkproxy, hiops)

Mojtaba Esfandiari

has completed all requirements for and is hereby recognized as

dCAP No. 2265

Date certified: April 18, 2014

Digium Training Manager

Mark Spence, CTO, Digium Inc.

مرجع آموزش ویپ با سافت سوئیچ استریسک

I started with Asterisk in 2002 while I was still in college

(Asterisk was born in 1999), and was able to build a consulting business around it for over a decade. It's amazing how Asterisk has continued to be the definitive open source VoIP platform for building new applications and businesses. I've continued to follow Asterisk over the years because it stays close to my heart, and it's impressive to see how it has continued to grow and transform with the technological revolution of the internet.

Asterisk continues to be a strong platform for VoIP development, and I can't imagine a better base platform to learn if you're involved in modern VoIP applications.

I'm glad to see Asterisk is still a topic that people are interested in writing about. It's a pleasure to see that Mr. Esfandiari.S et al. have written a book about Asterisk with new topics and headlines in Persian. I hope that the growth of such books in different languages could help students and interested people to be more familiar with Asterisk and to be able to grow VoIP technology and adoption through deployments and whitepapers.

- Leif Madsen

مجتبی اسفندیاری سید مجتبی نجفی مقدم

Asterisk Softswitch

What is LRKProxy?

What is LREProxy

. The LREProxy is Kernel RTP engine for relaying RTP packets crossing NIC in your network.

The LREProxy architecture is composed of two different layers.

. LREP_Controlling Layer (LREP_CL): The first layer is developed as User-Space application

. LREP_Transport Stateful Layer (LREP_TSL)

The second layer is developed in Kernel-Space as a main decision point for RTP admission controller and Quickpath selector.

LREProxy Architechture

The LREProxy architecture is composed of two different layers. LRKP_Controlling Layer (LRKP_CL) LRKP_Transport Stateful Layer (LRKP_TSL)

Expanding Asterisk with Kamailio

. Deploying large networks have specific challenges.

- . Most of those challenges are related to network design and topology
- . Redundancy (Signaling layer Transport Layer)
 - Active Active
 - Active Passive
- . Scaling
 - Number of calls
 - Number of users
- . High- Availability
 - Reliable service
 - Failover service
- . Resources Management

Fred Posner

@fredposner

. Security

Two Important Factors

. Two important factors that increase the consumption of resources in a network.

- . Call per second (CPS) SIP signaling
- . RTP relaying RTP Flow

SPIRENT ABACUS 5000

System of Model – Asterisk & LRKProxy

System of Model

Q2?

- . How many calls does the SoM handle?
- . Which Parts of the SoM is responsible for it?

Bottleneck Points

- . Signaling Flow
 - SBC(Kamailio) in Edge
 - Kamailio in CSCF
 - Asterisk Servers
- . RTP Flow
 - LRKProxy in Edge
 - Media servers in CSCF (rtpproxy, rtpengine, lrkproxy, ...)

Resource Management

<u>Q3?</u>

. How many recources (LoM) does the SoM need for handling 20000 calls or more?

Resource Management

<u>Q4?</u>

. How many Asterisk does the SoM need for handling 20000 calls or more?

Resource Management

<u>Q5?</u>

. How many LRKProxy does the SoM need for handling 20000 calls or more?

LRKProxy Resource Management

. In practical experiment, we used Sipp tools and Abacus 5000 for making calls and generating RTP media.

. The 20000 concurrent relaying RTP sessions with LRKProxy in one server.

		5 0	J	
s 🗈 Terminal 🔻			Thu 15:11 •	en 🕶 📑 📢 🛃 👻
root@Mojtaba-HP-EliteBook-2570p: ~ 😑 😑 😣				
File Edit View Search Terminal Tabs Help				
root@Moitaba-HP-E			ojtaba-HP-EliteBook × root@Mojtaba-HP-EliteBook ×	root@Mojtaba-HP-EliteBook × 🕰 👻
1 [2 [3 [] 4 [Mem[]]] Swp[114/15: 0/9:	0.0%] 5 [0.0%] 6 [0.5%] 7 [0.0%] 8 [545MB] Tasks: 20, 13 thr; 1 running 502MB] Load at rage: 0.00 0.00 0.00 Uptime: 1:00:01	0.0%] 0.0%] 0.0%] 2.9%]
PID USER	PRI NI VIRT RES	SHR S CPU% MEM% TIME+	Command	
1110 root	20 0 24604 3788	2924 R 1.0 0.0 0:11.39	htop	
701 root	20 0 90732 6116		sshd: root@pts/1	2180
570 root	20 0 19276 2096		/usr/sbin/irqbalancepid=/var/run/irqbalance.p	oid
692 root	20 0 90732 6280		sshd: root@pts/0	
264 root	20 0 32968 4124		/lib/systemd/systemd-jou nald	
1 root 267 root	20 0 28600 4876	3164 5 0.0 0.0 0:01.14 2744 5 0.0 0.0 0:00.12		
540 root	20 0 41340 3568 20 0 27476 2704		/lib/systemd/systemd-udeva /usr/sbin/cron -f	
544 root	20 0 28356 3000		/lib/systemd/systemd-logind	
548 messagebu	20 0 42124 3368			noforknopidfilesystemd
628 root	20 0 365M 21320		/usr/sbin/libvirtd	, sector
629 root	20 0 365M 21320		/usr/sbin/libvirtd	
630 root	20 0 365M 21320	16996 S 0.0 0.1 0:00.00	/usr/sbin/libvirtd	

Kernel processing

RTP Flow in LRKProxy

. LRKP_Controlling Layer (LRKP_CL)

The first layer gets all information from SDP body during signaling and relay them to the LRKP-Transport Stateful Layer (LRKP-TSL) for hashing.

2021-09-20 15:20:48,431 [81408] DEBUG udp_socket_service line:53 Received Command S: 716_1 => b'716_1 S 192.168.43.205 194.62.43.227 192.168.43.227 93.115.147.156 16592 20012 20014 8000 60 361EE027-61486786 2021-09-20 15:20:48,437 [81408] DEBUG udp_socket_service line:87 Sent response to client: b'716_1 S 192.168.43.205 194.62.43.227 192.168.43.227 93.115.147.156 16592 20012 20014 8000 60 361EE027-614867860003 2021-09-20 15:20:48,450 [81408] DEBUG udp_socket_service line:53 Received Command S: 699_1 => b'699_1 S 93.115.147.156 192.168.43.227 194.62.43.227 192.168.43.205 4000 20008 20010 15658 60 7ABC3232-61486785 2021-09-20 15:20:48,451 [81408] DEBUG udp_socket_service line:87 Sent response to client: b'699_1 S 93.115.147.156 192.168.43.227 192.168.43.205 4000 20008 20010 15658 60 7ABC3232-61486785 2021-09-20 15:20:48,736 [1952] DEBUG udp_socket_service line:172 Successfully sent data to kernel_space: b'716_1 S 192.168.43.205 194.62.43.227 192.168.43.227 194.62.43.227 192.168.43.227 93.115.147.156 16592 20012 20014 8000 60 361EE027-614867850 2021-09-20 15:20:48,737 [1952] DEBUG unix_socket_client_service line:172 Successfully sent data to kernel_space: b'699_1 S 93.115.147.156 192.168.43.227 194.62.43.227 194.62.43.227 194.62.43.227 192.168.

Received Command S: 716_1 => b'716_1 S src_ip: 192.168.43.205 dst_ip: 194.62.43.227 snat_ip: 192.168.43.227 dnat_ip: 93.115.147.156 sport: 16592 dport: 20012 snat_port: 20014 dnat_port: 8000 Timeout: 60 Call-ID:361EE027-61486786000327D2-204F2700 '

RTP Flow in LRKProxy

. LRKP_Transport Stateful Layer (LRKP_TSL)

The second layer is a main decision point for RTP admission controller and received packets should be forwarded with power of **NF_INET_PREROUTING** in Netfilter hook.

LRKProxy Config

------ setting module-specific parameters ------#!ifdef WITH_LRKPROXY loadmodule "lrkproxy.so"

modparam("lrkproxy", "lrkproxy_sock", "udp:127.0.0.1:22333")
modparam("lrkproxy", "custom_sdp_ip_avp", "\$avp(RR_CUSTOM_SDP_IP_AVP)")
#!endif

------ request_route ------#!ifdef WITH_LRKPROXY

if (is_present_hf("PRE_SOURCE"))
 \$avp(RR_CUSTOM_SDP_IP_AVP) = \$(hdr(PRE_SOURCE));
set_lrkproxy_set("0");
lrkproxy_manage("ei"); // or lrkproxy_manage("ie");

#!endif

/etc/pylrkproxy/pylrkproxy.ini

[kernel] start_port : 20000 end_port : 40000 current_port : 20000 internal_ip : 192.168.43.227

;It is under development external_ip : 194.62.43.227

[UDP socket] socket_udp_host = 0.0.0.0 socket_udp_port = 22333

[Cache] save_call_cache = False

[UNIX socket] forward_to = /root/sock

[logger] log_to_file = True log_to_console = False

Multiple LRKProxy Config

. The LRKP_CL and LRKP-TSL could be run as independence functions on different machines.

. We could have one LRKP_CL with multiple LRKP-TSL on different machines.

. It possibles to do not lose sessions when a LRKProxy engine crashes. (under development with etcd - https://github.com/etcd-io/etcd)

LRKProxy: Pros & Cons

- . Changing SDP parameter will be done by Kamailio, not by LRKProxy engine.
- . Forwarding packet in NF_INET_PREROUTING hook.
- . NAT Travelsal for endpoint.
- . Set Custom SDP information by AVP
- . Support RTCP.

. Resource port allocation with the consept of Game-Theory(under development) for reusing port in RTP sessions.

. Enable forwarding in sysctl's conf file:

net.ipv4.ip_forward=1

- . Does not support transcoding
- . Could make anchor for target RTP for Lawful interception (under development)

LRKProxy & IEEEExplore

. https://ieeexplore.ieee.org/document/9303608

10th International Conference on Computer and Knowledge Engineering (ICCKE2020) October 29-30, 2020 - Ferdowsi University of Mashhad - Iran

Improve Performance of RTP Relaying Sessions in IMS Transport Layer With LREProxy

^{1st} Mojtaba Esfandiari.S dept. of Computer Engineering, Ferdowsi University of Mashhad, Iran dept. of R&D member of NasimTelecom knowledge-base co, Tehran, Iran Email: esfandiari@nasimtelecom.com ^{2nd} Seyed Mojtaba Najafi dept. of Telecommunication Engineering, Islamic Azad University, Mashhad, Iran dept. of R&D member of Nasim Telecom knowledge-base co, Tehran, Iran Email: Email: ^{3ad} Morteza Iravani dept. of Computer Engineering, Ferdowsi University of Mashhad, Iran dept. of R&D member of NasimTelecom knowledge-base co, Tehran, Iran Email: iravani@nasimtelecom.com ^{4th} Sajad sabri dept. of Computer engineering, Shafagh Institute, Tonekabon, Iran dept. of R&D member of NasimTelecom knowledge-base co, Tehran, Iran Email: sabri@nasimtelecom.com

Abstract—The IP Multimedia Subsystem is an architectural network for delivering IP multimedia services and data. The IMS network has built on three layers which allows for the convergence of different access networks. Each layer in IMS is consisting of various elements and protocols that consequently process signaling or media flow to specific application service. While the Call Session Control Function (CSCF) is the main route decision of the IMS network, the most significant of resources are used by routing and delivering media flow in Transport data layer in IMS network. With raising of request for service in IMS, the usage of resource have been increased. The ingress and egress nodes in IMS network are critical points and could potentially being bottleneck because they have to transmit huge signaling and media packets from and to IMS network. In this paper, we focused on Transport data layer

Thank you

Mojtaba Esfandiari.S

Email:

esfandiari@nasimtelecom.com esfandiari.m84@gmail.com

> Twitter: @MespioS

dept. of R&D member of NasimTelecom https://nasimtelecom.com/en/